Bayesian prognostic covariate adjustment

Historical data about disease outcomes can be integrated into the analysis of clinical trials in many ways. We build on existing literature that uses prognostic scores from a predictive model to increase the efficiency of treatment effect estimates via covariate adjustment. Here we go further, utilizing a Bayesian framework that combines prognostic covariate adjustment with an empirical prior distribution learned from the predictive performances of the prognostic model on past trials. The Bayesian approach interpolates between prognostic covariate adjustment with strict type I error control when the prior is diffuse, and a single-arm trial when the prior is sharply peaked. This method is shown theoretically to offer a substantial increase in statistical power, while limiting the type I error rate under reasonable conditions. We demonstrate the utility of our method in simulations and with an analysis of a past Alzheimer's disease clinical trial.

Enter your email address to download paper.

Click the link to begin download.
Oops! Something went wrong while submitting the form.

Enter your email address to watch the webinar.

Click the link to watch webinar.
Oops! Something went wrong while submitting the form.
White Papers

Using AI-based Prognostic Models to Design Efficient, Unbiased Clinical Trials

Webinars

Part 3: Innovation in Clinical Research: AI-based Drug Development Tools and the Regulatory Landscape‍

Webinars

Part 2: Faster, More Efficient Trials: Novel Trial Designs using Digital Twins‍

Watch an overview of specific use cases for Digital Twins and learn how novel trial designs with Digital Twins enable smaller trials that maintain their power.
Watch a panel discussion on the regulatory landscape where experts share perspectives on the future of AI-based drug development tools like Digital Twins.
Statistical principles of clinical trials with Digital Twins