Bayesian prognostic covariate adjustment

Historical data about disease outcomes can be integrated into the analysis of clinical trials in many ways. We build on existing literature that uses prognostic scores from a predictive model to increase the efficiency of treatment effect estimates via covariate adjustment. Here we go further, utilizing a Bayesian framework that combines prognostic covariate adjustment with an empirical prior distribution learned from the predictive performances of the prognostic model on past trials. The Bayesian approach interpolates between prognostic covariate adjustment with strict type I error control when the prior is diffuse, and a single-arm trial when the prior is sharply peaked. This method is shown theoretically to offer a substantial increase in statistical power, while limiting the type I error rate under reasonable conditions. We demonstrate the utility of our method in simulations and with an analysis of a past Alzheimer's disease clinical trial.

Enter your email address to download paper.

Click the link to begin download.
Oops! Something went wrong while submitting the form.

Enter your email address to watch the webinar.

Click the link to watch webinar.
Oops! Something went wrong while submitting the form.
Webinars

How will AI transform the future of medicine?

White Papers

Evaluating Digital Twins for Alzheimer’s Disease using Data from a Completed Phase 2 Clinical Trial

White Papers

Prognostic digital twins overcome the limitations of external control arms in RCTs

Both methods reduce control arm sizes, but only digital twins control for bias.
A Phase 2 study on crenezumab in mild-to-moderate AD was used to retrospectively assess the validity of Unlearn's approach for AD clinical trials.
Hear from Charles Fisher, founder and CEO of Unlearn, in this on-demand webinar about how AI will transform the medical landscape of tomorrow.