Deep learning for comprehensive forecasting of Alzheimer's Disease progression

Most approaches to machine learning from electronic health data can only predict a single endpoint. Here, we present an alternative that uses unsupervised deep learning to simulate detailed patient trajectories. We use data comprising 18-month trajectories of 44 clinical variables from 1908 patients with Mild Cognitive Impairment or Alzheimer's Disease to train a model for personalized forecasting of disease progression. We simulate synthetic patient data including the evolution of each sub-component of cognitive exams, laboratory tests, and their associations with baseline clinical characteristics, generating both predictions and their confidence intervals. Our unsupervised model predicts changes in total ADAS-Cog scores with the same accuracy as specifically trained supervised models and identifies sub-components associated with word recall as predictive of progression. The ability to simultaneously simulate dozens of patient characteristics is a crucial step towards personalized medicine for Alzheimer's Disease.

Enter your email address to download paper.

Click the link to begin download.
Oops! Something went wrong while submitting the form.
White Papers

Incorporating External Control Arms into Clinical Trials

White Papers

Applications of Digital Twins in Clinical Trials for Alzheimer’s Disease

Press

Unlearn.AI named to the 2021 CB Insights AI 100 List of Most Innovative Artificial Intelligence Startups

The AI 100 is CB Insights' annual list of the 100 most promising private AI companies in the world.
How Digital Twins make it possible to design and run more efficient clinical trials with well-defined statistical properties.
Synthetic Controls and Digital Twins both increase power, but only Digital Twins are robust to known as well as unknown confounders.