Deep learning for comprehensive forecasting of Alzheimer's Disease progression

Most approaches to machine learning from electronic health data can only predict a single endpoint. Here, we present an alternative that uses unsupervised deep learning to simulate detailed patient trajectories. We use data comprising 18-month trajectories of 44 clinical variables from 1908 patients with Mild Cognitive Impairment or Alzheimer's Disease to train a model for personalized forecasting of disease progression. We simulate synthetic patient data including the evolution of each sub-component of cognitive exams, laboratory tests, and their associations with baseline clinical characteristics, generating both predictions and their confidence intervals. Our unsupervised model predicts changes in total ADAS-Cog scores with the same accuracy as specifically trained supervised models and identifies sub-components associated with word recall as predictive of progression. The ability to simultaneously simulate dozens of patient characteristics is a crucial step towards personalized medicine for Alzheimer's Disease.

Enter your email address to download paper.

Click the link to begin download.
Oops! Something went wrong while submitting the form.
Blog

Digital Twins: A Tool for Risk Mitigation in the Era of COVID-19

Blog

CB Insights 2020 Digital Health 150: Unlearn.AI named in List of Most Innovative Digital Health Startups

Blog

Embracing Innovation to Move Forward

At Unlearn, our goal is to use the data available from historical trials, to generate new evidence to inform and advance research.
Unlearn is thrilled to be recognized as a contributing member of the international community of pioneers in health.
In what ways can we mitigate risk and apply innovative solutions to unstable trials in the wake of COVID-19?