Digital Control Subjects for Alzheimer's Disease Clinical Trials (AMIA 2019)

Objective: To develop a method to model disease progression that simulates detailed clinical data records for subjects in the control arms of Alzheimer's disease clinical trials.Methods: We used a robust data processing framework to build a machine learning dataset from a database of subjects in the control arms of a diverse set of 28 clinical trials on Alzheimer's disease. From this dataset, we selected 1908 subjects with 18-month trajectories of 44 variables and trained a model capable of simulating disease progression in 3-month intervals across all variables.Results: Based on a statistical analysis comparing data from actual and simulated subjects, the model generates accurate subject-level distributions across variables and through time. Focusing on a common clinical trial endpoint for Alzheimer's disease (ADAS-Cog), we show the model can predict disease progression as accurately as several supervised models. Our model also predicts the outcome of a clinical trial whose data are distinct from the training and test datasets.Conclusion: The ability to simulate dozens of clinical characteristics simultaneously is a powerful tool to model disease progression. Such models have useful applications for clinical trials, from analyzing control groups to supplementing real subject data in control arms.

Enter your email address to download paper.

Click the link to begin download.
Oops! Something went wrong while submitting the form.
White Papers

Applications of Digital Twins in Clinical Trials for Alzheimer’s Disease


Unlearn.AI named to the 2021 CB Insights AI 100 List of Most Innovative Artificial Intelligence Startups


Welcoming Dr. Taylor to Unlearn.AI’s Board of Directors

I’m honored to have such an inspirational and experienced leader like Dr. Taylor join our board.
The AI 100 is CB Insights' annual list of the 100 most promising private AI companies in the world.
How Digital Twins make it possible to design and run more efficient clinical trials with well-defined statistical properties.