Generating Digital Twins with Multiple Sclerosis Using Probabilistic Neural Networks

Multiple Sclerosis (MS) is a neurodegenerative disorder characterized by a complex set of clinical assessments. We use an unsupervised machine learning model called a Conditional Restricted Boltzmann Machine (CRBM) to learn the relationships between covariates commonly used to characterize subjects and their disease progression in MS clinical trials. A CRBM is capable of generating digital twins, which are simulated subjects having the same baseline data as actual subjects. Digital twins allow for subject-level statistical analyses of disease progression. The CRBM is trained using data from 2395 subjects enrolled in the placebo arms of clinical trials across the three primary subtypes of MS. We discuss how CRBMs are trained and show that digital twins generated by the model are statistically indistinguishable from their actual subject counterparts along a number of measures.

Enter your email address to download paper.

Click the link to begin download.
Oops! Something went wrong while submitting the form.
White Papers

Incorporating External Control Arms into Clinical Trials

White Papers

Applications of Digital Twins in Clinical Trials for Alzheimer’s Disease

Press

Unlearn.AI named to the 2021 CB Insights AI 100 List of Most Innovative Artificial Intelligence Startups

The AI 100 is CB Insights' annual list of the 100 most promising private AI companies in the world.
How Digital Twins make it possible to design and run more efficient clinical trials with well-defined statistical properties.
Synthetic Controls and Digital Twins both increase power, but only Digital Twins are robust to known as well as unknown confounders.