Generating Digital Twins with Multiple Sclerosis Using Probabilistic Neural Networks

Multiple Sclerosis (MS) is a neurodegenerative disorder characterized by a complex set of clinical assessments. We use an unsupervised machine learning model called a Conditional Restricted Boltzmann Machine (CRBM) to learn the relationships between covariates commonly used to characterize subjects and their disease progression in MS clinical trials. A CRBM is capable of generating digital twins, which are simulated subjects having the same baseline data as actual subjects. Digital twins allow for subject-level statistical analyses of disease progression. The CRBM is trained using data from 2395 subjects enrolled in the placebo arms of clinical trials across the three primary subtypes of MS. We discuss how CRBMs are trained and show that digital twins generated by the model are statistically indistinguishable from their actual subject counterparts along a number of measures.

Enter your email address to download paper.

Click the link to begin download.
Oops! Something went wrong while submitting the form.
Blog

AD/PD 2021: Unlearn will present novel, AI-driven approaches to enabling smaller, more efficient Alzheimer’s clinical trials

Press

How Digital Twin Technology is Disrupting Healthcare

Press

Next-gen digital health innovation in clinical trials

The Rock Health team reflects on the evolution of digital in clinical trials, discuss the current state, and explore the opportunity to further transform drug discovery.
The use of digital twins in the healthcare industry is revolutionizing clinical processes.
Join us at The 15th​ International Conference on Alzheimer’s and Parkinson’s Diseases and related neurological disorders, March 9 - 14, 2021.