Machine learning for comprehensive forecasting of Alzheimer's Disease progression

Most approaches to machine learning from electronic health data can only predict a single endpoint.The ability to simultaneously simulate dozens of patient characteristics is a crucial step towardspersonalized medicine for Alzheimer's Disease. Here, we use an unsupervised machine learning model called a Conditional Restricted Boltzmann Machine (CRBM) to simulate detailed patient trajectories.We use data comprising 18-month trajectories of 44 clinical variables from 1909 patients with MildCognitive Impairment or Alzheimer's Disease to train a model for personalized forecasting of disease progression. We simulate synthetic patient data including the evolution of each sub-component of cognitive exams, laboratory tests, and their associations with baseline clinical characteristics. Synthetic patient data generated by the CRBM accurately reflect the means, standard deviations, and correlations of each variable over time to the extent that synthetic data cannot be distinguished from actual data by a logistic regression. Moreover, our unsupervised model predicts changes in total ADAS-Cog scores with the same accuracy as specifically trained supervised models, additionally capturing the correlation structure in the components of ADAS-Cog, and identifies sub-components associated with word recall as predictive of progression.

Enter your email address to download paper.

Click the link to begin download.
Oops! Something went wrong while submitting the form.

Enter your email address to watch the webinar.

Click the link to watch webinar.
Oops! Something went wrong while submitting the form.
Webinars

How will AI transform the future of medicine?

White Papers

Evaluating Digital Twins for Alzheimer’s Disease using Data from a Completed Phase 2 Clinical Trial

White Papers

Prognostic digital twins overcome the limitations of external control arms in RCTs

Both methods reduce control arm sizes, but only digital twins control for bias.
A Phase 2 study on crenezumab in mild-to-moderate AD was used to retrospectively assess the validity of Unlearn's approach for AD clinical trials.
Hear from Charles Fisher, founder and CEO of Unlearn, in this on-demand webinar about how AI will transform the medical landscape of tomorrow.