Next-gen digital health innovation in clinical trials

The Next Horizon of Digital Clinical Trials

Digital transformation of clinical trials is already underway. Rather than doing the same things more efficiently vanguard companies are looking for ways to use technology to do things differently. Some of these solutions are right around the corner, while others are further off. Below are some of the most exciting developments we are tracking in the space:

  • Replace traditional control arms with synthetic control arms or digital twins
    Traditionally, control groups in randomized controlled trials will receive a placebo or the current therapy considered standard-of-care to serve as a comparison for the intervention under investigation. However, the use of traditional control groups has raised ethical questions especially for debilitating conditions such as cancer or rare disease, or when the standard of care has limited efficacy. One alternative is synthetic control arms which use historic data or real-world evidence as opposed to traditional control arms. One digital health startup, UnlearnAI, is taking the idea a step further with their machine learning platform DiGenesis that builds “digital twins.” In this context, digital twins are comprehensive, longitudinal, and computationally generated clinical records that describe what would have happened if a patient had received a placebo.

Enter your email address to download paper.

Click the link to begin download.
Oops! Something went wrong while submitting the form.
White Papers

Applications of Digital Twins in Clinical Trials for Alzheimer’s Disease

Press

Unlearn.AI named to the 2021 CB Insights AI 100 List of Most Innovative Artificial Intelligence Startups

Blog

Welcoming Dr. Taylor to Unlearn.AI’s Board of Directors

I’m honored to have such an inspirational and experienced leader like Dr. Taylor join our board.
The AI 100 is CB Insights' annual list of the 100 most promising private AI companies in the world.
How Digital Twins make it possible to design and run more efficient clinical trials with well-defined statistical properties.